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Abstract

Objectives The endocannabinoid system is an endogenous lipid signalling network
comprising arachidonic-acid-derived ligands, cannabinoid (CB) receptors, transporters and
endocannabinoid degrading enzymes. The CB1 receptor is predominantly expressed in
neurons but is also co-expressed with the CB2 receptor in peripheral tissues. In recent
years, CB receptor ligands, including D9-tetrahydrocannabinol, have been proposed as
potential anticancer agents.
Key findings This review critically discusses the pharmacology of CB receptor activation
as a novel therapeutic anticancer strategy in terms of ligand selectivity, tissue specificity and
potency. Intriguingly, antitumour effects mediated by cannabinoids are not confined to
inhibition of cancer cell proliferation; cannabinoids also reduce angiogenesis, cell migration
and metastasis, inhibit carcinogenesis and attenuate inflammatory processes. In the last
decade several new selective CB1 and CB2 receptor agents have been described, but most
studies in the area of cancer research have used non-selective CB ligands. Moreover, many of
these ligands exert prominent CB receptor-independent pharmacological effects, such as
activation of the G-protein-coupled receptor GPR55, peroxisome proliferator-activated
receptor gamma and the transient receptor potential vanilloid channels.
Summary The role of the endocannabinoid system in tumourigenesis is still poorly
understood and the molecular mechanisms of cannabinoid anticancer action need to be
elucidated. The development of CB2-selective anticancer agents could be advantageous in
light of the unwanted central effects exerted by CB1 receptor ligands. Probably the most
interesting question is whether cannabinoids could be useful in chemoprevention or in
combination with established chemotherapeutic agents.
Keywords anticancer agent; cancer; cannabinoids; chemoprevention; endocannabinoid
system

Introduction

The endocannabinoid system (ECS) comprises the two well-characterised G-protein-
coupled receptors (GPCRs) CB1 and CB2,

[1–3] as well as the putative newGPCRsGPR55 and
GPR119,[4,5] former orphan receptors. While cannabinoid binding to GPR55 has been
shown (vide infra), GPR119 appears to have little affinity for cannabinoids.[6] There is also
pharmacological evidence of other putative cannabinoid receptors that remain unknown.[7,8]

The endogenous ligands that activate CB receptors are arachidonic acid derivatives,
primarily arachidonoyl ethanolamide (anandamide) and 2-arachidonoyl glycerol (2-AG),[9,10]

which are directly released from cell membranes. Endocannabinoids are pleiotropic lipids
and their actions are not restricted to cannabinoid receptors. Anandamide also activates
transient receptor potential vanilloid 1 (TRPV1), peroxisome proliferator-activated receptors
(PPARs), and potentially signals via serotonin 5HT(3) receptors.[11–13] Moreover, 2-AG is an
apparently potent ligand for GPR55 whose function is yet to be uncovered.[5,14]

Among other effects, endocannabinoids have been reported to modulate cell
differentiation, cell signalling, cell migration and cell fate.[15–17]

The terpenophenolic phytocannabinoids from Cannabis sativa, with the prototype
cannabinoid D9-tetrahydrocannabinol (D9-THC),[18] were the first bioactive CB receptor
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ligands to be described and they have served as molecular
scaffolds for the chemical development of analogous
structures such as CP55,940.[19] The use of CP55,940 as a
radioligand has played a key role in the cloning of the CB
receptors.

It is probably not an overstatement to claim that without
cannabis research the ECS would not have been explored so
extensively in the last two decades. It is becoming
increasingly clear that the ECS is involved not only in
central nervous system regulation (mainly via CB1) and
neuroimmunological processes (both via CB1 and CB2) but
also in several peripheral physiological processes.[20] It is
important to highlight that many of the functions of the
ECS that are currently proposed are not yet fully under-
stood. Nonetheless, there is clinical evidence that CB1

receptor antagonists (inverse agonists) such as rimonabant
(SR141716A) are useful in the treatment of obesity and for
the improvement of cardiovascular and metabolic risk
factors. (Rimonabant was the first therapeutic CB1 receptor
blocker approved in Europe but was withdrawn in October
2008 because of psychiatric side effects.) CB1 receptor
antagonists also have good prospects in other therapeutic
areas, including smoking cessation, alcohol addiction and
cognitive impairment.[21] CB1 agonists are useful for the
prevention of nausea and vomiting and to stimulate
appetite.[22] There is increasing evidence that CB receptors
are involved in numerous immune mechanisms and are
generally able to attenuate inflammatory processes.[23,24]

There are numerous reports on the anti-inflammatory action
of CB receptor ligands from animal studies. Positive effects
have been reported using CB ligands in models of liver
inflammation,[25] neuroinflammation,[26] gut inflamma-
tion,[27] skin inflammation[28] and arthritis.[29] Based on
CB2 receptor knockout studies, the involvement of this
receptor has been suggested in immune cell function and
development, infection, embryonic development, bone loss,
liver disorders, pain, autoimmune inflammation, allergic
dermatitis, atherosclerosis, apoptosis and chemotaxis.[30] In
particular, non-psychoactive CB2 receptor ligands have
been shown to be effective in bone degeneration,[31–34]

gut inflammation,[35] neuroprotection[36] and atherosclero-
sis.[37,38] Given that cannabinoid pharmacology is exception-
ally complex, it is difficult to provide a general picture.
Overall, however, it seems that CB2-selective agonists and
inverse agonists and CB1 inverse agonists could be promising
therapeutic agents to target chronic inflammatory diseases.
Moreover, indirect activation of the ECS via modulation of
endocannabinoid tone, such as inhibition of fatty acid amide
hydrolase (FAAH) and monoacyl glycerol lipase, may be
a promising strategy to target pathological inflammatory
processes.[39] Different selective and non-selective CB1/CB2

receptor ligands have been described, which show potential
for a wide range of diseases.[20,21]

Evidence accumulated within the last decade suggests that
CB receptor agonists may have antitumour properties in a
variety of cancer types; this topic has been reviewed in
several cancer-related journals.[40–43] In this review, the
recent developments and insights are discussed with respect
to CB receptor signalling, ligand selectivity, specificity of
effect in different tissues and potential therapeutic relevance.

In 1975, Munson and colleagues reported for the first time
that cannabinoids can reduce tumour growth and viability of
lung cancer cells in vitro as well as in vivo.[44] After this
initial observation another 20 years passed until more
detailed investigations yielded further insights into the
anticancer mechanisms of cannabinoids. However, the
mechanism of action of CB receptor ligands has started to
become uncovered only recently (vide infra). While some
signalling events involved in the cytotoxic effects exerted by
cannabinoids apply for all cellular models, other cellular
mechanisms are restricted to only a few cell types. Thus, an
important question is how CB receptor activation ultimately
leads to inhibition of tumour growth and apoptosis of cancer
cells. It is currently not clear whether these effects are
specific for certain types of cancer cells, and whether the
in-vitro data correlate with more physiological conditions, in
particular with regard to the concentrations employed.

CB-receptor mediated signal transduction
events leading to anticancer effects

Despite a growing amount of data on the cellular signalling
events triggered by cannabinoids in non-neuronal cells, as yet
there is no straightforward explanation for the molecular
mechanism for their anticancer action. Pharmacological
intervention in cancer therapy typically relies on well-
defined molecular events that attenuate tumour growth, such
as inhibition of microtubule dynamics, inhibition of topo-
isomerase or DNA intercalation. So far, GPCR signalling in
cancer therapy is not a well-designed strategy and there are
still many unanswered questions relating to signalling
dynamics, limited prolongation of effect due to desensitisa-
tion, specificity of signals and potentially unwanted effects.
However, with a change of paradigm from the ‘one selective
drug acting on one target’ to network pharmacology,[45]

anticancer strategies involving GPCRs may become more
interesting in the future. Fundamental to such developments
is a better understanding of GPCR cellular signalling
cascades, as cancer cells often hijack the normal physio-
logical functions of GPCRs to survive.[46] Targeting of
dysregulated kinases in cancer cells could be accomplished
via GPCR signalling, and modulation of the cancer kinome
may drive tumour cells into apoptosis. As shown in the
following sections, CB receptor signalling events that lead to
antitumour effects are complex and largely depend on tissue
type and physiological context (Figure 1). The major
signalling molecules involved in cannabinoid-induced anti-
tumour action are described in the following sections.

Ceramide
Ceramides are composed of sphingosine and fatty acid
moieties and are commonly found at high concentrations
within the cell membrane, where they are derived from
sphingomyelin, one of the major membrane lipids. Ceramide
is also a lipid messenger specifically triggered upon
activation (e.g. via GPCR activation) and appears to play a
key role in the cytoplasm, mediating different effects on cell
survival following CB receptor activation.[47] An acute rise
of ceramide by sphingomyelin hydrolysis is observed in
both glioma cells and normal primary astrocytes after
cannabinoid challenge, presumably mediated through the
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CB1 receptor.[48,49] In addition, malignant glioma cells, as
well as other cancer cells (e.g. pancreatic cancer), show
sustained de-novo ceramide generation in a CB1/CB2-
dependent manner, resulting in inhibition of AKT (see
below),[50,51] which among other cues will finally drive the
cells into apoptosis. Two further studies have shown the role
of ceramide as a key player in glioma anticancer action
mediated via the CB2 receptor.[52,53] Interestingly, it was
recently shown that either CB1 or CB2 receptor activation
induces apoptosis through de-novo ceramide synthesis in
colon cancer cells, with tumour necrosis factor (TNF)-a
acting as a link between CB receptor activation and ceramide
production.[54] More strikingly, it appears that cannabinoids
are able to protect astrocytes and other neuronal cells from

oxidative stress[55] and other neurotoxic signals[56] through
ceramide signalling. Where the exact switch for this
differential reaction to the apparently identical stimulus lies
remains unknown, although in terms of known signalling
events it should be concluded that AKT acts downstream of it.

AKT signalling
AKT1 (v-akt murine thymoma viral oncogene cellular
homolog), also known as ‘AKT’ or protein kinase B,
represents a group of three enzymes of the serine/threonine-
specific protein kinase family and is involved in cellular
survival pathways by inhibiting apoptotic processes.[57]

Independent of the ceramide-mediated effect on AKT
described above, both CB1 and CB2 receptors are coupled to
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Figure 1 Major signalling pathways involved in the anticancer effects exerted by cannabinoids. The fact that most cannabinoids studied so far

interact with more than one receptor adds to the complexity of the pharmacological effects. Ceramide, AKT and ERK are likely to be key mediators in
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Gi/Go proteins in different cell types and they inhibit
adenylate cyclase and can activate phosphatidylinositol
3-kinase (PI3-K), which activates AKT via phosphatidylino-
sitol (3,4,5)-triphosphate (PIP3).[58,59] Along that line, canna-
binoid stimulation of whole brain areas and of healthy
non-transformed cells such as astrocytes and also of
CB1-positive Chinese hamster ovary cells causes AKT
activation almost independently of drug concentration.[60–62]

In contrast, one of the general pro-apoptotic signalling events
after cannabinoid treatment in cancer cells is the dephos-
phorylation of AKT1, occurring after both CB1 and CB2

receptor activation and probably involving dominant ceramide
signalling. PI3-K-dependent AKT activation can be regulated
through the tumour suppressor PTEN (phosphatase and
tensin homolog), which works essentially as the opposite of
PI3-K.[63] PTEN acts as a phosphatase to dephosphorylate
PIP3 back to phosphatidylinositol(4,5)P2. This removes the
membrane-localisation factor from the AKT signalling path-
way. Without this localisation, the rate of AKT activation
decreases significantly, as do the all the downstream pathways
that depend on AKT for activation. PIP3 can also be
dephosphorylated at position 5 by the SH-2-containing inositol
phosphatase (SHIP) family of inositol phosphatases, SHIP1
and SHIP2. These polyphosphate inositol phosphatases
dephosphorylate PIP3 to form phosphatidylinositol(3,4)P2.
An increasing amount of data suggests that AKT inhibition is
one of the critical events after cannabinoid administration,
determining the cellular downstream effects that ultimately
lead to apoptosis (Figure 1). Interestingly, in transformed
cancer cells, low nanomolar concentrations of CB agonists
lead to AKT phosphorylation through transactivation by
epidermal growth factor receptor (EGFR), followed by a
prosurvival proliferative burst,[64] whereas higher concentra-
tions decrease the activation status of AKT, usually culminat-
ing in growth arrest or apoptosis.[51,65,66] Importantly,
overexpression of AKT could rescue cannabinoid-induced
apoptosis in melanoma cells, reflecting its essential role in the
mediation of cannabinoid-induced apoptosis.[67] Therefore, the
concentration range of cannabinoids and the cellular transfor-
mation status appear to critically influence the differential
cytotoxic effects mediated via AKT signalling. Whether AKT
is a molecular switch that determines the often biphasic effects
exerted by cannabinoid treatment (vide infra) needs to be
elucidated.

Extracellular signal-regulated kinase
Another well-known signalling molecule recruited upon
treatment of cancer cells with CB receptor agonists is
extracellular signal-regulated kinase (ERK). However,
reports relating to its activation or inhibition by cannabinoids
differ between cancer types, indicating an as yet unclear and
maybe more complex role. After incubation with cannabi-
noids, cells derived from gliomas,[68] prostate cancer[66] and
breast cancer[69] display a sustained ERK activation;
activation levels of ERK remain unchanged in melanoma
cells,[67] whereas in lung[70] and colon cancer cells
phosphorylation of ERK was reduced.[65] While inhibition
of the usually pro-proliferative signalling molecule ERK is
in line with a pro-apoptotic signalling cascade,[71] it is more
difficult to understand the contribution of activated ERK to

the cannabinoid-induced inhibition of growth. There is
evidence that ceramide induced by cannabinoid treatment
and inhibition of protein kinase A by Gi-coupled CB receptor
stimulation both can cause chronic ERK activation, which is
reported to lead to cell cycle arrest and cell death.[68,69] In
leukaemia cells, ERK1/2 was induced more strongly by CB2

receptor-selective agonists than in primary leucocytes.[72]

The same study showed that ERK phosphorylation was
context dependent, as lipopolysaccharide-induced ERK1/2
activation could be partially blocked by CB2 ligands.

P8 (Sp(G/C)F-1)
Transcription factor P8 (or candidate of metastasis 1, also
referred to as Sp(G/C)F-1), is an endoplasmic-reticulum-
associated stress protein able to bind to DNA and is similarly
affected by CB-receptor stimulation.[73] After treatment with
cannabinoids, it is upregulated in different cancer cell lines,
probably in response to de-novo synthesised ceramide, which
subsequently leads to co-recruitment of the transcription
factors activating transcription factor 4 (ATF4), TRB3 and
C/EBP homologous protein (CHOP), all three of which are
also critically involved in the cellular response to stress
stimuli, probably via both CB1 and CB2 receptors.[50,74] P8
seems to be a key factor for cellular sensitivity towards
cannabinoids, as siRNA-mediated knock-down of P8 can
abolish the cytotoxicity of D9-THC in glioma cells and
breast cancer cells. Moreover, P8 is also implicated in the
potential synergistic effect of chemotherapeutic agents with
cannabinoids.[50,75]

Cell cycle arrest and apoptosis

As classic anticancer agents directly inhibit tumour cell
growth, the effects of cannabinoids on cancer cell cycle and
apoptosis induction have been investigated in detail. However,
no general picture is emerging as with, for example, the G2/M
cell cycle arrest typically observed with tubulin-targeting
antimitotic agents, probably because different cell types react
differently to distinct concentrations of cannabinoids and
there are different stress-related mechanisms of action.[42]

Moreover, cannabinoids are only moderately cytotoxic and
typically exert their effects in the upper-nanomolar and
micromolar concentration ranges, depending on the initial
cell number and experiment. For example, in U373MG glioma
cells expressing CB receptors, D9-THC induced apoptosis at
concentrations greater than 5 mM in vitro,[76] which appears to
be a typical cytotoxic concentration. While some CB-receptor-
expressing cancer cells survive treatment with higher micro-
molar concentrations (e.g. HL60 cells) (Gertsch et al.,
unpublished data), other cancer cells (e.g. Jurkat T-cells[77])
undergo cell cycle arrest and apoptosis, in part coupled to the
signalling pathways described above. Interestingly, R(+)-
methanandamide, WIN-55,212-2 and D9-THC lead to up-
regulation of tumour suppressor genes such as p16 (INK4A),
p27 and p53,[66,78,79] and the oncogene RB is hypophos-
phorylated,[67,80] which could be due to altered activation
levels of either AKT or ERK. Further down this cascade,
different cyclins such as D1 and D2, as well as the
transcription factor E2F1, are down-regulated, followed by
lower activity of cyclin-dependent kinases cdk2, 4 and 6[66]

and cdc2,[81] finally causing cell cycle arrest at different cell
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cycle check points. These events can either reduce prolifera-
tion of cells or prime them for apoptosis. Additionally,
cannabinoid challenge with D9-THC and WIN-55,212-2 can
prompt cancer cells to undergo apoptosis through the
mitochondrial apoptosis pathway, where AKT inhibition
classically leads to activation of the pro-apoptotic BCL2-
family member BCL2 antagonist of cell death (BAD).[65,82]

Upon BAD activation, mitochondrial cytochrome c is
released, leading to activation of caspase-3 and cleavage of
poly(ADP-ribose) polymerase,[81] which will finally drive
cells into apoptosis. This putative mechanism may account for
cell cycle arrest and induction of apoptosis in some adherent
cells, but the mechanism may be significantly different in
other cell types (vide infra).

Anti-angiogenesis effects

All of the growth inhibitory mechanisms of cannabinoids
discussed so far are direct cellular effects. However,
cannabinoids can modulate intercellular signalling, leading
to modulation of important regulatory factors involved in
inflammation and cellular activation and thereby influence
tumour development indirectly. In this regard, the effect of
cannabinoid treatment on tumour angiogenesis ranks most
prominently.[83] Different cannabinoid compounds with
varying CB1 and CB2 receptor affinities decrease the
formation of new blood vessels in tumours of different
origins (e.g. non-melanoma skin cancer and glioma) by
downregulating essential proangiogenic factors such as
vascular endothelial growth factor (VEGF), placental growth
factor and angiotensin II accompanied by dephosphorylation
of VEGF receptors 1 and 2.[79,84,85] These events could also
partially account for a lower rate of metastasis, as this
process is crucially linked to peri- and intratumoural
vascularisation.[86]

It is not only cancer cells that are influenced by
cannabinoids; endothelial cell sprouting and vessel formation
were blocked in various angiogenesis assays by application
of R(+)-methanandamide.[87] Both the CB1 receptor agonist
ACEA and the CB2 receptor agonist JWH-015 decreased the
weight and vascularisation of carrageenan-induced granulo-
mas in rats and reduced mast cell number and activation in
granulomatous tissue.[88] Interestingly, in this study ACEA
and JWH-015 prevented the transcription and expression of
rMCP-5, a protein involved in sprouting and advance of new
blood vessels. Currently, it is unclear whether these effects
are actually mediated via CB receptor signalling or whether
other as-yet unknown mechanisms are involved. However,
the effectiveness of the CB2-receptor-selective agonists
JWH-015 and JWH-133 in blocking monocyte migration[89]

suggests that CB2 activation may generally inhibit cell
migration and vessel formation. In fact, cell migration is a
key event in tumour metastasis and angiogenesis. Various
studies have shown that cannabinoids affect cell migration
through both CB1 and CB2 receptors, as well as through
mechanisms related to elusive cannabinoid targets.[17,90]

Overall, the evolving picture is rather complex, as apparently
anandamide and 2-AG produce opposite effects and only
2-AG signals via CB receptors.[17] Endocannabinoids now
join the list of factors involved in bone marrow cell

proliferation and differentiation, the ECS being a part of a
highly complex lipid network that is still poorly understood.

The CB2 receptor – a proto-oncogene?

It has been shown that cannabinoids stimulate proliferation
of neural stem/precursor cells acting via both CB1 and CB2

receptors, leading to activation of the PI3-K/AKT path-
way.[91] Both the anti- and pro-proliferative effects exerted
via CB receptor activation are intriguing and clearly deserve
further investigation. In leukaemia cells, the CB2 receptor
has been suggested to act as a proto-oncogene, which under
certain circumstances may turn into an oncogene that
promotes carcinogenesis. Valk and colleagues have identi-
fied the new common virus integration site Evi11 and
demonstrated that the gene encoding the CB2 receptor (Cnr2)
is its potential target, thus suggesting that Cnr2 could be a
proto-oncogene.[92] Subsequent research by the same group
demonstrated that the CB2 receptor can act as an oncoprotein
that blocks neutrophilic differentiation when overexpressed
in myeloid precursor cells and that haematopoietic precursor
cells expressing high levels of CB2 have increased suscept-
ibility for leukaemia development, thus suggesting that CB2

and Evi1/Evi11 might collaborate in leukemogenesis.[93]

Moreover, the CB2 receptor appears to mediate this activity
through mitogen-activated protein kinase ERK/(MEK) and
PI3-K pathways.[94] This would suggest that blocking rather
than activating the CB2 receptor should be beneficial in the
treatment of leukaemia. Alternatively, stabilising the CB2

receptor in its inactive state using inverse agonists could
counteract leukemogenesis. High CB2 receptor expression in
myeloid precursors is also associated with different immu-
nomodulatory effects, such as inhibition of immune cell
migration[90] and inhibition of TNF-a expression.[20,24] Since
both CB2-selective agonists and inverse agonists are anti-
inflammatory in vivo and, paradoxically, apparently both via
CB2 interaction,[20,24,95,96] it is currently not clear whether
CB2-selective agonists or inverse agonists should be devel-
oped for therapeutic intervention. Moreover, the effects of
these ligands may differ substantially in vitro and in vivo, and
an agonist in vitro may act as an antagonist in vivo and vice
versa.[96] However, it is still not clear whether the CB2

receptor actually becomes an oncoprotein and whether this
relates to mutations or increased receptor expression. On the
other hand, it is already clear that the CB2 receptor regulates
cell growth and differentiation in promyelotic human cells,
being a regulator of signal transduction via the oncogenic
Erk1/2 pathways and execution of mitogenic signals that are
relevant to cell differentiation (vide supra). In light of the
fact that healthy humans have a high surface expression of
functional CB2 receptors in monocytes and B cells but a low
surface expression in T cells (Gertsch et al., unpublished
data), it is possible that Cnr2 is a proto-oncogene in T cells
but not in promyelocytic cells (precursors of monocytes/
macrophages and dendritic cells). This would be confirmed
by the fact that cannabinoids induce apoptosis in Jurkat
T cells but not HL60 cells. Another factor that complicates
studies with the CB2 receptor is that Cnr2 has undergone
more rapid evolution than Cnr1, leading to pronounced
species differences in ligand–receptor interactions (receptor
affinities and G-protein recruiting)[97] and therefore efficacy
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in animal studies cannot always be extrapolated to humans.
There are still too many uncertainties to draw any conclusion
regarding cannabinoid treatment of lymphomas, despite
studies showing overexpression of the CB2 receptor.

Intriguingly, CB1 agonists can induce apoptosis in mantle
cell lymphoma via CB1 receptor activation,

[98] although this
was under conditions where the CB2 receptor is also
activated, as non-selective cannabinoids were used in this
study (Table 1; Figure 2). Moreover, CB2 receptor activation
leads to anticancer effects in other tissues. CB2 receptor
overexpression may contribute to the regression of human
anaplastic thyroid tumour in nude mice following inter-
leukin-12 gene transfer,[139] suggesting an inhibitory role of
CB2 in thyroid carcinogenesis. In vitro, Met-F-AEA was
shown to reduce thyroid tumour growth[79] and to induce
apoptosis in thyroid carcinoma cells.[140] Interestingly, 3,30

diindolmethane (DIM), which is an anticarcinogenic meta-
bolite generated by ingestion of indole-3-carbinol commonly
found in Brassica vegetables, has recently been shown to be
a weak partial CB2 receptor agonist.

[141] However, DIM has
other targets that may explain its anticancer effects, including
elastase.[142] Nonetheless, it is tempting to speculate that
dietary CB2 ligands such as beta-caryophyllene[72] and DIM
may exert potentially chemopreventive effects and inhibit
carcinogenesis via CB2 receptor interaction.

Anticancer effects of cannabinoids
independent of CB receptors

Not all effects of cannabinoids are mediated through classic CB
receptors, and there is an increasing amount of data showing
that many ligands are not specific for CB receptors. Often well-
designed protein-selective ligands are specific for a certain
target until their non-specificity is shown, rendering erroneous
initial conclusions drawn from pharmacological experiments.
This may also be true for CB receptor inverse agonists (i.e.
antagonists). Recently, it was shown that the CB1 selective
agonist SR141716A (rimonabant) also binds to GPR55[143] and
can act as GPR55 receptor antagonist.[144] A recent report using
a beta-arrestin Pathhunter assay showed that SR141716A and
AM251 induced significant effects via GPR55, while endo-
cannabinoids were only weakly active.[141] While the number
of CB1- and CB2-selective agonists and antagonists is
increasing, it is not clear whether these compounds exert
other cellular actions at the often high concentrations/doses
used (Table 1). Moreover, studies like the one performed on
the murine lymphomas L-4, LSA and P815 with D9-THC
treatment may be hard to interpret, asD9-THC apparentlymore
strongly activates GPR55 than CB receptors,[143] the role of
which in cancer remains to be elucidated. Recently, it was
shown that GPR55 signals via Rho and activates nuclear factor
of activated T cells (NF-AT).[145] Because NF-AT signalling
plays a potential role in cancer growth (e.g. in Burkitt’s
lymphoma),[146] this certainly complicates the interpretation of
studies performed with cannabinoids without using knockout
mice as controls. In fact, the new cannabinoid-like receptor
GPR55 with signalling distinct from CB1 and CB2 may be a
hitherto neglected receptor with regard to the anticancer effects
of several cannabinoids. Many cannabinoids interact with
GPR55 and the receptor appears to be present in numerous cell

types.[4,14,143] GPR55 is activated by a whole range of plant,
synthetic and endogenous cannabinoids and is blocked by
cannabidiol, a non-psychoactive phytocannabinoid,[5,143] and
SR141716A.[144] Cannabidiol induces a concentration-depen-
dent increase in FAAH activity and 5-lipoxygenase activity in
U87 glioma cells, reducing the growth rate.[147] The most
striking difference reported so far is the agonist activity of the
CB1 receptor antagonists AM251 and AM281 at GPR55,[5,141]

rendering elucidative studies of CB receptor specificities a
challenging task. To date, nothing has been published about its
expression in cancer cells and therefore putative effects of
cannabinoids through GPR55 cannot be ruled out and deserve
further attention. Activation of GPR55 by AM251[125] could
also explain the observation that this drug exerts antiprolifera-
tive effects on pancreatic cancer cells in the low micromolar
range. Similarly, another article reported cell cycle arrest
in breast cancer cells treated with the CB1 antagonist
SR141716A,[148] an effect that could, at least in part, also be
mediated by interaction with GPR55.

TRPV channels, PPARg and 5HT(3) receptor are also
non-cannabinoid targets of cannabinoids.[13,149,150] Ananda-
mide and similar cannabinoid structures activate the vanilloid
receptor (VR1 or TRPV1), which can be blocked with the
TRPV1 antagonist capaszepine. In cervical cancer cells with
aberrant TRPV1 expression, the stimulation of TRPV1 rather
than CB1 or CB2 receptors accounts for the apoptosis-
inducing effects of anandamide,[101] whereas the migration-
reducing effects of R(+)-methanandamide could be blocked
by antagonists to TRPV1, CB1 and CB2, highlighting the
complexity of cannabinoid-evoked signal generation.[151]

Recently, De Petrocellis and colleagues suggested that
phytocannabinoids and cannabis extracts exert some of
their pharmacological actions by interacting with TRPA1
and TRPM8 channels, with potential implications for the
treatment of pain and cancer.[152]

Another well-described mechanism for CB-independent
action of certain CB receptor agonists is their binding to
some members of the nuclear receptor transcription factor
superfamily PPARs,[12,150] although the extent to which this
mechanism is involved in the effects of cannabinoids as anti-
tumour agents remains poorly described. Intriguingly, in the
HepG2 hepatoma cell line, PPARg may play a key role in
WIN 55,212-2-induced apoptosis.[138] The non-psychoactive
D9-THC analogue ajulemic acid, which binds to the CB2

receptor, has been shown to exert antitumour effects in
glioma cells.[107] Interestingly, ajulemic acid is also an
activator of PPARg.[153]

In hormone-dependent breast and prostate carcinoma,
cannabinoid treatment can decrease expression levels of
receptors involved in their pro-proliferative response to the
cytokines prolactin, nerve growth factor (NGF) and andro-
gen.[69,129,154] Namely, in prolactin-dependent breast cancer,
2-AG and anandamide downregulate the prolactin receptor
and the trkNGF receptor, whereas in postate cancer, 2-AG,
anandamide and WIN-55,212-2 reduce levels of prolactin
and androgen receptors. In addition to these indirect prolifera-
tion-inhibiting effects, certain plant-derived and synthetic
cannabinoids inhibit the multidrug-transporter ABCG2 and
p-glycoprotein in mouse embryonic fibroblasts (MEF), immor-
talised renal cells, Caco-2 cells and rat brain microvessel cells,
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which potentially contribute to sensitisation to and accumula-
tion of chemotherapeutic agents such as topotecan and
doxorubicin.[155–159]

Is elevation of endocannabinoid levels
in tumours good or bad?

There is good evidence that certain tumour cells overexpress
endocannabinoids, which are typically released during cellular

stress (e.g. upon activation of Toll-like receptor pathways).
For example, in colon tissue anandamide levels are signifi-
cantly upregulated after malignant transformation.[160] Since
endocannabinoids activate both CB1 and CB2 receptors, they
could initiate the anticancer signalling pathways described
above. This leads to the obvious question of why a growing
tumour should kill itself by such a mechanism? It has
previously been postulated that endocannabinoid tone may be
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a means of controlling endogenous tumour growth (reviewed
by Flygare & Sander[42]). However, despite data from several
studies showing anticancer effects mediated by the endogen-
ous ligands anandamide and 2-AG (either directly or by
increasing their levels by blocking degradation or transport), it
is still not clear whether the ECS is an endogenous anticancer
or a procarcinogenic system. The latter was proposed in a
study using knockout mice, in which CB1/CB2 receptors were
suggested to play a positive role in UV-induced inflammation
and development of skin cancer; the study showed that in the
skin UVB activates nuclear factor kB via CB receptors,
leading to increased TNF-a expression.[161] As cannabinoids
at low concentrations typically inhibit TNF-a expression from
immune cells,[20,24] this seems to be rather contradictory.
However, several lines of evidence suggest that the ECS in the
skin is different from the ECS in the rest of the body, and that
CB2 receptor agonists seem to be pro-inflammatory in the
skin.[20,28] Somewhat contradictorily, CB receptor activation
in melanoma has been shown to reduce tumour growth via
AKT signalling.[67] A report by Aguado and colleagues on
glioma stem-like cells showed that cannabinoids such as
HU210 and JWH-133 cause higher expression of glial
differentiation markers in a CB1 and CB2-dependent manner,
respectively.[162] Upon engraftment of these more differen-
tiated cells into mice, a lower rate of gliomagenesis was
observed than in engrafted control cells, suggesting a potential
inhibitory role for CB receptor agonists in cancer stem cell
differentiation. The CB2 receptor agonists JWH133 and D9-
THC were able to inhibit glioma cell invasion in mice,
probably due to down-regulation of metalloproteinase-2
expression.[52] A recent study suggests that high CB1 receptor
expression is associated with severity of prostate cancer and
outcome.[163] Obviously, the role of the ECS system is not
clear, and it is likely that different tissues employ the ECS
differently. While for many tissues (central nervous system,
liver, gut, arteries, etc.) it may be beneficial to activate the
ECS, other tissues may develop pathologies (adipose tissue,
skin). As pointed out in a recent review by Di Marzo,[20]

endocannabinoids may be able to act in opposite directions
depending on the physiological context. Furthermore, physio-
logical processes are dynamic whereas experiments often look
at single time points rather than the overall kinetics. This
makes the development of new cannabinoid therapeutics a
challenging task. With regard to cancer, it needs to be
emphasised that CB receptor expression in cancer cells has
largely been determined at the level of mRNA expression and
by Western blots,[67,120,154] which does not allow for the fact
that surface expression may vary and may not correlate with
gene expression. Unpublished data from our laboratory clearly
indicate that many cancer cells lack CB surface expression
despite being positive in RT-PCR and Western blot analyses.
Thus, studies ignoring the fact that CB receptors are probably
not coupled to G-proteins in many cancer cell lines may lead
to potentially erroneous conclusions.

In spite of the vast number of publications supporting the
use of cannabinoids as anticancer agents, it should be noted
that there are some potential not insignificant drawbacks,
such as the apparently prosurvival effects of cannabinoids
at low concentrations in cancer cells and their potential
immunosuppressive action (vide supra). Apparently,

nanomolar concentrations of D9-THC, comparable with
those detected in the serum of patients after administration
of D9-THC, accelerate proliferation of cancer cells instead of
inducing apoptosis.[64] The same observation also holds true
for the in-vitro incubation of several cancer cell types with
WIN55,212-2 and HU210, an effect that was attributed to
transactivation of the EGFR, leading to activation of the
AKT and MAPK signalling pathways.[64] In this regard, the
use of cannabis as it is already approved as an adjuvant to
chemotherapeutic treatment regimens[164,165] could poten-
tially boost tumour growth, although clinical evidence for
this hypothesis is lacking.

The second critical point relates to the fact that D9-THC
potentially alters the immune status by suppressing the cell-
mediated TH1 response, which is of particular relevance in
the battle against tumour cells.[166] Since TNF-a expression
is typically inhibited by low cannabinoid concentrations and
TNF-a itself inhibits tumour growth,[167] it is not clear what
the effect of cannabinoids on physiological tumour develop-
ment is. On the other hand, a pro-inflammatory environment
can lead to carcinogenesis[167,168] and cannabinoids may be
able to prevent this. Two recent studies have shown that loss
of CB1 led to an increase in carcinogenesis in colon
cancer[169] and enhanced endocannabinoid tone prevented
colon cancer,[170] thus pointing to a suppression of colon
carcinogenesis by the ECS and CB1 receptor. Moreover, the
CB2 receptor has been suggested to exert beneficial
regulatory effects in the gut, such as attenuation of
inflammation and probably colon cancer.[35] With the
commonly used xenograft animal models, where human
cancer cells are grafted into immunodeficient mice, it is
impossible to predict the impact of the cannabinoid treatment
on the immune surveillance of the tumour; data from a
melanoma allograft model suggest that the inhibitory effects
on tumour growth and formation may be independent of
immune status of the mice and site of drug injection.[67]

Conclusions and outlook

Cannabinoids may have anticancer effects in the appropriate
context but their effects may not be sufficiently radical for
chemotherapy. Currently, D9-THC (Marinol) and the syn-
thetic derivative Nabilone are successfully used as adjuvants
to chemotherapeutic treatment because they prevent nausea
and vomiting and stimulate appetite.[22,165] Moreover, the
D9-THC- and cannabidiol-containing C. sativa extract
Sativex is used for the symptomatic relief of neuropathic
pain in adults with multiple sclerosis and as an adjunctive
analgesic treatment for adults with advanced cancer.[164,171]

Currently, there are no clinical data indicating that co-
treatment with these cannabinoids improves or reduces the
anticancer efficacy of the actual chemotherapeutic agents.
Such clinical comparisons would be very interesting. Based
on current knowledge, the ECS may be a system that, under
the appropriate conditions, produces synergy with estab-
lished chemotherapeutic agents. In vitro, subcytotoxic
concentrations of D9-THC were shown to sensitise leukae-
mia cells to chemotherapeutic agents such as doxorubicin
and vincristine.[172] Several other reports have dealt with the
potential synergism of cannabinoids with chemotherapeutic
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agents such as topotecan and doxorubicin.[50,75,155–159]

Clearly, more research should be directed towards the
potential synergism and antagonism of cannabinoids in
chemotherapy. Despite several promising reports from
studies with cannabinoids in animal xenograft models, data
relating to humans are limited and therapeutic benefits
therefore remain speculative. Moreover, there are numerous
apparently non-toxic natural products that potentially exert
chemopreventive or antitumour effects, many of which have
been confirmed in animal models,[173] but few have been
tested in a clinical setting. This is largely because of limited
financial resources and the high risk for a pharmaceutical
company to become involved in clinical studies with known
natural products in general and cannabinoids in particular.

While data obtained in different cellular and animal models
suggest that cannabinoid ligands could be useful to treat certain
forms of cancer, the abundance of CB receptors in different
tissues could clearly be a problem with regard to potentially
unwanted effects. However, based on a recent review,[174]

cannabinoids appear to be selective antitumour agents that kill
glioma cells without affecting the viability of non-transformed
counterparts. Intriguingly, they mention a pilot clinical trial on
patients with glioblastoma multiforme which showed remark-
able antitumour effects of cannabinoids and a good safety
profile, thus setting the basis for further studies.

Interestingly and somewhat surprisingly, most studies to
date have been carried out with ligands that target both CB1

and CB2 receptors in a non-selective manner. In terms of a
potential therapeutic application the unwanted psychotropic
effects mediated via CB1 could be problematic. However,
there is still a limited amount of data on CB2-receptor-
selective anticancer effects (by agonists, silent antagonists or
inverse agonists) and the potential therapeutic relevance
remains unclear. Given that the CB2 receptor mediates
several of the effects reported for CB1 without being
psychotropic, more research should be directed to the role
of CB2 in cancer. Future studies using CB1- and CB2-
selective ligands in combination with animal models in
which CB receptors have been genetically deleted should be
useful. Importantly, conclusions drawn from experiments
with CB receptor antagonists may be misleading because
these ligands potentially interact with other targets, such as
the CB1 receptor inverse agonists (antagonists) SR141716A
and AM251 with GPR55 (vide supra).

Maybe more promising is the potential of the ECS in
the suppression of cancer development. It is tempting to
speculate that the ECS is involved in carcinogenesis and
tumourigenesis in certain tissues, as it potentially modulates
the biochemical microenvironment, probably leading to
modulation of cytokines and growth factors. To provide
stronger evidence, future research will have to uncover
potential ways of chemoprevention by cannabinoids. Given
that the ECS regulates immune processes, it is tempting to
believe that the ECS can directly affect carcinogenesis by
modulating inflammatory stress that leads to carcinogenesis.
More than 10 years ago, Sidney and colleagues[175]

concluded that not only is the evidence linking cannabis
smoking to cancer negative, but the largest human studies
cited indicated that cannabis users had lower rates of cancer
than non-users. Moreover, those who smoked both cannabis

and tobacco had lower rates of lung cancer than those who
smoked only tobacco – a strong indication of chemopreven-
tion. However, this statement was recently challenged by a
study performed by Aldington and colleagues,[176] which
showed that cannabis smoking increased the risk for lung
cancer, but it is not certain that cannabinoids are responsible
for this correlation.[177] Along the same lines, it is not clear
whether chronic marijuana use is correlated with an
increased incidence of testicular germ cell tumours[178]

because of cannabinoid action. An increasing amount of
data shows attenuation of tumour growth by both orally
and locally administered cannabinoids in different animal
models, raising high hopes for potentially new treatments, in
particular in combination with established chemotherapeutic
agents (vide supra). Future research along that line will have
to show whether cannabinoids or cannabimimetic agents may
reduce tumour growth in vivo synergistically when used with
chemotherapeutic agents. Meanwhile, the exact mode of
action of cannabinoids, the role of classic CB receptors, and
the potential involvement of GPR55 and the other non-
cannabinoid targets remain to be elucidated. In conclusion, a
better understanding of the underlying physiological pro-
cesses of the ECS in malignancy is needed before anticancer
agents that act via the ECS can be developed (Figure 3).
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